

Date: 31/10/2014
Time : 09:00-12:00

B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - NOVEMBER 2014

PH 3506 - MATHEMATICAL PHYSICS

Dept. No. \square

$$
\text { PART - A (} 10 \times 2=20 \text { Marks })
$$

Answer ALL questions:

1. Compute the principal value of \sqrt{i}.
2. State Cauchy's integral theorem.
3. Calculate $\operatorname{grad} \varphi$ if $\varphi=(x-2)(y+2)$ at $(1,2)$.
4. Evaluate $\int_{0}^{2} \int_{0}^{2}\left(x^{2}+y^{2}\right) d x d y$
5. Determine the fundamental period of $\cos x$ and $\sin 2 x$.
6. Using Laplace integral, evaluate $\int_{0}^{\infty} \frac{\cos \omega d \omega}{1+\omega^{2}}$
7. What is a normal matrix? Give an example.
8. Prove that the product of two unitary matrices is also unitary.
9. Using trapezoidal rule, evaluate $\int_{0}^{2} y d x$ from the following data

ues	0	0.5	1.0	1.5	2.0
$\stackrel{\square}{\square}$	1.000	0.800	0.500	0.308	0.200

10. Given $\frac{d y}{d x}=-y$ with $y=1$ at $x=0$. Find $y(0.02)$ using Euler's method.

$$
\text { PART - B (4 x } 7.5=30 \text { Marks })
$$

Answer any FOUR questions:
11. (i) Evaluate $\int_{i}^{1} z e^{\left(\frac{z^{2}}{2}\right)} d z$
(ii) Integrate $\oint \frac{d z}{z^{2}+1}$ counter clockwise around a circle with $|z-i|=1$.
12. If $i \vec{i}=y z \vec{\imath}+z x \vec{\jmath}+x y \vec{k}$ and $f=x y z$, find $\operatorname{curl}(f \backslash \vec{i})$.
13. Find the Fourier series of the function $f(x)=\left\{\begin{array}{cc}-1, & \text { if }-2<x<0 \\ 1, & \text { if } \quad 0<x<2\end{array}\right.$
14. Diagonalize the matrix $\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]$
15. Fit a straight line by least squares method for the following data

$\stackrel{\text { nod }}{ }$	0	5	10	15	20
\cdots	7	11	16	20	26

16. State and prove Green's theorem in the plane.

$$
\text { PART - C (4 x } 12.5=50 \text { Marks })
$$

Answer any FOUR questions:
17. (i) Find the real and imaginary parts of $f(z)=2 i z+6 \bar{z}$ at $z=0.5+4 i$.
(ii) Show that $\cos h^{2} z+\sin h^{2} z=\cos h(2 z)$
(iii) Using Cauchy's integral, evaluate $\oint \frac{e^{2} \cos z}{\left(z-\frac{\pi}{2}\right)^{2}} d z$ counterclockwise around the circle with $|z|=2$.
18. (i) Find the directional derivative of $g=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ at $(4,2,-4)$ in the direction of $(1,2,-2)$.
(ii) Using Gauss-divergence theorem, evaluate $\iint_{S}\left(x^{3} d y d z+y^{3} d z d x+z^{3} d x d y\right)$ where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$.
19. Find the even and odd periodic half range expansions of the function

$$
f(x)=\left\{\begin{array}{c}
\frac{2}{L} x \quad \text { if } 0<x<\frac{L}{2} \\
\frac{2}{L}(L-x) \text { if } \frac{L}{2}<x<L
\end{array}\right.
$$

20. Determine the eigen values of $A=\left[\begin{array}{ccc}2 & 0 & -2 \\ 0 & 0 & -2 \\ -2 & -2 & 1\end{array}\right]$ and show that matrix A satisfies its own characteristic equation.
21. (i) Find the Lagrange interpolating polynomial of degree 3 for the following data

$\frac{\operatorname{ma}}{x 10}$	0	1	4	5
$\frac{x}{y}$	8	11	78	123

(ii) Compute the value of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $x=1.05$ from the following table

	1	1.05	1.10	1.15	1.20
	1	1.0247	1.0488	1.0724	1.0955

22. (i) Determine the value of ' a ' for the function $u=e^{3 x} \cos a y$ is harmonic and also find its harmonic conjugate.
(ii) Find the inverse of the linear transformation

$$
\begin{aligned}
& x=-2 a-2 b+7 c \\
& y=4 a+3 b-12 c \\
& z=-a+2 c
\end{aligned}
$$

